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A fully implicit shock tracking method for solving hyperbolic free boundary problems 
arising in fluid dynamics is presented. The new method is based on the noniterative implicit 
methods developed by Beam and Warming and others. The principal feature of the new 
approach is that the implicit form is used to treat both interior points and boundary 
conditions simultaneously. In particular, the location of the free boundary (shock) surface is 
treated implicitly and coupled with all other unknowns. The method is presented here in the 
context of unsteady one-dimensional flow in a variable area duct with an internal shock wave. 
The fully implicit method and other strategies for advancing the shock are compared for 
computing a steady solution via a time asymptotic approach. Issues regarding extension of the 
method to multiple dimensions are also discussed. 

1. INTRODUCTION 

In this paper we develop a fully implicit shock tracking (or fitting) method for one- 
dimensional flow in a variable area duct. The method is based on the noniterative 
implicit methods described, for example, in Beam and Warming [I]. Implicit methods 
have recently become popular for fluid dynamics problems, especially when using a 
time asymptotic approach to obtain steady state solutions (see, e.g., [2-4]). The 
reason for this popularity is that implicit methods (based on von Neumann stability 
properties) allow a larger time step than is possible for explicit methods and conse- 
quently reduce the number of steps needed to reach a steady solution. In practical 
problems such as the supersonic blunt body problem, however, we can often improve 
the accuracy and efficiency of computations by tracking at least some of the 
shockwaves present in the problem. This entails using the tracked shock as a 
computational boundary, the geometry of which is unknown and is to be determined. 
Existing applications of implicit methods to such problems treat the shock geometry 
explicitly (e.g., [4]). It then becomes questionable whether the large time steps 
allowed at interior points can in fact be taken since the explicit advancement of the 
shock could impose restrictive bounds on step size. 

The fully implicit method presented here (see Section 3) addresses this issue by 
treating both the interior flow equations and the boundary conditions in an implicit 
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fully coupled time-accurate manner. This approach is rather complicated and requires 
more work per step than is needed when treating boundaries explicitly. The allowable 
time step also increases, however, in some cases quite dramatically. For comparison 
purposes, we also consider a method which explicitly advances the shock. In addition, 
we develop an implicit but uncoupled approach which enjoys some of the advantages 
of the fully implicit method without the attendant increase in work per step (see 
Section 3). 

Section 4 contains a detailed study of the computational efficiency of three 
methods for computing steady state solutions. It should be noted that to some extent 
the dramatic results for the fully implicit method are related to the one-dimensionality 
of the model problem. In the limit as time step size goes to infinity, the fully implicit 
method reduces to Newton’s method 151, which provides an extremely efficient 
technique for computing steady solutions when a good initial guess is available [6]. 
Unfortunately, in multidimensional problems, the associated matrix problem becomes 
prohibitively large and operator splitting or approximate factorization is generally 
used. In this case the reduction to Newton’s method will not occur and splitting error 
will limit the allowable size of time steps. Issues relating to the extension of implicit 
shock tracking methods to several dimensions will be discussed more fully in 
Section 5. 

2. ANALYTIC FORMULATION 

In this section we formulate a model problem on which to illustrate the fully 
implicit method. We wish to compute the steady one-dimensional flow in a duct of 
variable cross-sectional area A(x) using a time asymptotic approach. The unsteady 
duct flow is described in physical space 0 < x < x,,,~~ by 

where 

PU 
PU2 +P 

,@E +P)U 

(1) 

and p is density, u is velocity, E = e + iu2, where e is specific internal energy, and p 
is pressure. For simplicity the equation of state is chosen to be that of a perfect gas, 

P=(Y- l)pe. 
For certain duct shapes A(x) and boundary specifications (discussed later), a 

steady solution exists in which a shock stands at some location in the duct. For 
numerical solution we shall not treat the problem in the form of (1) because of the 
difftculties associated with resolving the shock. Instead, we shall use a tracking 
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procedure in which the shock location is treated as a dependent variable. This is 
accomplished by transforming the problem to a computational space (<, t) in which 
the physical shock location s(t) is forced to be at a fixed location. An example of a 
transformation which does this is given by the mapping to computational space 

r = t, 

r = T(x, t) = X/S(f), 0 < x < s(t), (2) 

= 1 + (K - I)[@ - s(t>)/(x,,, -s(t))], so> < x < xmax 2 

so that the physical shock location s is mapped into the internal computational 
boundary < = 1. Likewise the inflow location x = 0 and the outflow location x = x,,,~~ 
are mapped into < = 0 and r = K, respectively (see Fig. 1). 

Under transformation (2) the governing equations in computational space (<, t) 
can be written in the weak conservation form [7] 

au/ar=-(aiyay)+ (1ppk R,(<; u,s,s,), (3) 

where U = AZ!/J, F = &U + A&R/J and J= r, is the Jacobian, for fixed r, of 
transformation (2). 

It remains to specify the boundary conditions at inflow (< = 0), outflow (< = K), 
and at the shock (< = I). Appropriate boundary conditions can be determined by a 
characteristic analysis of the system. Such an analysis is presented in detail in 
Appendix A for the case of supersonic inflow and subsonic outflow with an internal 
shock with flow crossing the shock from left to right. 

supER~N.,,,.,, 
INFLOW A(X) S&x OUTFLOW 

>Y 

j3 I 2 3 is JS+l Jwax 

OcrT“I 

SUPERSONIC SHOCK SUBSONIC 
INFLOW OUTFLOW 

FIG. 1. Physical and computational spaces for duct problem. 
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At the supersonic inflow all flow quantities are specified so that 

PO 
U(0, t) = SA (0) 

t i 

POUO 

PO@, + 4/2) 
3 (4) 

where the subscript “0” refers to the specified inflow quantities. At the subsonic 
outflow boundary (< = K), only the density pe is specified; hence, 

In addition, two compatibility conditions must be satisfied on < = K. These can be 
written in the form 

Ahllax) =TR,(K;U,s,s,)+ K- 1 pest-- knax 
dpe 

4~ B 1 
where 

B = - (a& - 1;; 1 :“:(a, - &,) ), T=(B / ; ;), 

with the “e” subscript denoting quantities at the outflow boundary and “a” the sound 
speed (YP/P>"~. 

The shock c = 1 represents an internal boundary. Quantities at the left (the low 
pressure side) will be denoted with an “L” subscript and quantities at the right (the 
high pressure side) will be denoted with an “R” subscript. The flow quantities on 
both sides of the shock must satisfy the Rankine-Hugoniot relations. These can be 
written in the form 

u, = 9(U,, s, s,). (6) 

The vector-valued function 9’ is given explicitly in Appendix B for a perfect gas with 
constant y. On the left side of the shock, all of the original equations (3) hold with 
the l partial derivatives interpreted using only quantities on the left side (i.e., 
0 < r < 1). On the right side of the shock (the high pressure side), only one 
compatibility condition need be satisfied. This condition combined with the Rankine- 
Hugoniot relations differentiated with respect to r gives the following equation for s,: 
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where a,, a,, and a3 are defined in Appendix A. Thus, the equations for s and s, can 
be summarized in the form 

The transformed form of Eq. (3) and boundary conditions (4)-(7) fully specify the 
problem to be discretized. 

3. NUMERICAL METHODS 

The implicit methods considered here are based on generalized time differencing in 
delta form introduced by Warming and Beam [8]. Namely, for any vector of 
unknowns W satisfying a system of equations of the form 

we have 

AW”-c,hA(R(r,~“;W”))=c,AW”-‘+c,hR(r,~”; W”) 

+ [2c, - (1 + ?t2c2)] O(P) + O(Q), (8) 

where A(.)” = (.)n+l - (.)“, h = r”+’ -t”, rc = (r” - r”-‘)/h, c3 = 1 - ZC*, and c, 
and c2 are scalar parameters. 

Fully Implicit Shock Tracking (FIST) 

The FIST approach is to consider both the conservation variables U and the shock 
geometry S simultaneously in an implicit manner. Using (S), the FIST time 
discretization takes the form 

AU”-c,hA(R,(U”,S”))=c,AU”-‘+c,hR,(U”,S”); O<<<l,l<<<k, 

(9) 

AU”, = A(Z?(U”,, P)); r= 1, (10) 

AU” -c, h A(R,(U”, S”)) = c2 AU” + c3hR2(Un, S”); t-= k (11) 

AS-c,hA(R#J”,S”))=c,AS”-‘+c,hR,(U”,S”). (12) 

Here (9) represents interior equations (3), (10) represents shock relations (6), (11) 
represents the two outflow compatibility conditions of Eq. (5b), and (12) represents 
(7). When ARi (i = 1, 2, 3) and AL@ are linearized, the resulting equations remain 
fully coupled. More precisely, the linearizations involve both U and S; e.g., 

A(R,(U”, S”)) z [aR,/aU]” AU” + [8Ri/aS]’ AS”, 
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where [LBJXJ]” and [MJLS]” represent the (unique) linear differential operators 
corresponding to the “derivatives” of Ri with respect to ZJ and S, respectively, taken 
at (U”, S”). The evaluation of these linearizations will be discussed later in this 
section. 

The problem is discretized spatially using equally spaced points j = l,...,j, to the 
left of the shock and j =j, + l,...,j,,, to the right of the shock (see Fig. 1) and 
replacing spatial derivatives by centered differences at interior points and appropriate 
one-sided differences at < = 1 and < = K. For convenience, the unknowns U at < = 0 
are eliminated by substituting (4) into the discretized equations. The resulting discrete 
matrix problem for AU” (j = 2,..., j,,,), AS” admits essentially a block tridiagonal 
solution when the equations and unknowns are suitably ordered. In particular, the 
linearized system is written with the ordering, 

(j = L.,j,), 

AUi”,+ 1 - [a9/lW,] AtJj: - [H/B] AS” = 0, 

(j =j, + L...,j,,, - I), 

AV',jm,, + (A(Xmax ),'(K - 1)) PC AS" = 0, 

(i= 2, 3), 

-c,h [f$]AU”+ (I-c,h [~~)dS”=e,d~“‘+~~b~:. 

Writing the system in this way yields an algebraic system of the form 

(13) 
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where A is a block tridiagonal matrix with (j,,, - 1) rows of blocks of size 3 x 3, B 

is 3(&, - 1) x 2, C is 2 x 3(j,,, - I), and D is 2 x 2. This system is solved using 
a block inversion procedure as found in [9] (see Appendix C for details). After the 
solution of (13) is obtained, Uj:: ,i is redefined using (6) to ensure that the Rankine- 
Hugoniot conditions are satistied. 

Explicit Shock Tracking (EST) 

For comparison purposes, we consider an algorithm EST in which the shock quan- 
tities S are not treated implicitly. Preliminary experimentation with several ways of 
explicitly treating the unknowns S indicated that the following method showed the 
best convergence behavior: First, the conservation variables U are advanced 
implicitly using (9~(11) linearized with 5’ fixed at S”, subject to boundary 
conditions (4) and (5a) with s = s”. The discrete algebraic system for AU” 
(j = 2,...,j,,,) is A AU” = RHS, where the matrix A is the same as in (13). Next, S 
is advanced explicitly using 

sy” = s: + hr3(Un+‘, S”), s TV+’ = sn + hs;+‘. 

The final step, as in FIST, is to redefine Uj”,:: using (6) with Ul+‘, Sn+ ‘. 

Alternating Unknown Implicit (AUI) 

We also consider a compromise approach in which some of the implicit character 
of the shock advancement is maintained. In essence the method alternates the 
unknowns which are treated implicitly (AUI). First, the variables U are advanced 
implicitly keeping the shock fixed as in EST. Next, the shock variables S are 
advanced implicitly keeping U fixed at Unf’ using 

(I-c,h[dR,/aS])AS” =qAS”- + h[c,R,(U”+‘,S”) + (c3 -c,)R3(Un,S”)]. 

Finally, as in FIST and EST, Uj’+: is redefined using (6). As will be discussed in 
Section 4, this method allows a larger time step than EST with no significant increase 
in computational time. For this reason AU1 may be a valuable tool for multidimen- 
sional problems where operator splitting limits the time step. 

Numerical Linearization 

Implementation of all the above methods requires evaluations of various Jacobian 
matrices. Indeed, suppose we consider the differential operator aG/a& where 
G = G(V) and V= V(<) are vector-valued functions. Then the linearization of aG/at 
with respect to V is given by 

where [aG/LJV] is the Jacobian matrix of G with respect to V. In principle, for a 
perfect gas, analytic expressions can be obtained for the required Jacobian matrices. 
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An alternative approach is to directly evaluate the Jacobians numerically (to order of 
the square root of machine error) by replacing the derivatives with respect to the 
components of V by appropriate first-order forward differences. This direct numerical 
approach is used in the present study. It is simpler to program (especially for FIST) 
and appears to cause little or no difference in quality of results or execution time. 
Note that, using the direct numerical approach, the formation of the matrix for FIST 
requires essentially six evaluations of Ri (i = 1, 2, 3) and &@ (since U and S contain a 
total of 5 components). This is comparable to four evaluations for EST and AU1 and 
2 evaluations for an explicit predictor-corrector method. 

4. NUMERICAL RESULTS 

We now present our computational results for the duct flow problem, assessing 
first the accuracy of the steady-state finite difference solution, and then the 
computational efficiencies of the various methods (FIST, EST, and AUI). For the 
purposes of further comparison, we also compare with the explicit predictor-corrector 
method of Brailovskaya; see Appendix D. (For the present problem, this method 
converges faster than the second-order accurate MacCormack scheme, and also 
enjoys the advantage that it reduces to the same steady-state difference equations as 
do the other methods tested here.) In the numerical experiments, the duct shape was 
taken to be A(x) = 1.398 + 0.347(tanh(0.8x - 4.)), with x,,, = 10. In all cases we 
take K = 2, y= 1.4, p. = 0.502, u0 = 1.299, e, = 1.897, and pe = 0.776, and we use 
Euler implicit time differencing (i.e., ci = c, = 1, cz = 0). We use two different initial 
guesses, hereafter referred to as the “good guess” and “bad guess.” The good guess is 
the exact steady state solution for a slightly perturbed duct shape, cf. [6]. The bad 
guess is an exact solution for flow in the given duct A(x) but with a different 
downstream density pe specified. In our experiments, the outflow condition p, = 0.776 
was imposed impulsively at t = 0. Figures 2a and b illustrate the quality of the 
pressure profiles for the two guesses relative to the exact steady-state solution. The 
steady-state solution of the difference equations (obtained with any of the methods) is 
shown in Figs. 3a and b for j,,, = 18 and 34, respectively. In the latter case the 
numerical solution is virtually indistinguishable from the exact solution. We wish to 
emphasize that, in these results and all those that follow, no numerical dissipation 
was used. 

In comparing the efficiencies of the various methods, we shall refer to runs made 
with time steps corresponding to various multiples of the CFL (Courant, Friedrichs, 
Levy) number, defined to be w  AT/A<, where w  is the maximum over all j of the 
spectral radius of [aF/aulj. We first determine the approximate maximum value of 
CFL at which each of the methods will run with j,,, = 34 and when started with the 
good or bad guess (Table I). We note that, as expected, FIST approaches Newton’s 
method in the limit of large time steps. Indeed, with CFL = 106, FIST converged in 5 
iterations to steady-state tolerances within machine error (IO-i3) when started with 
the good guess. 
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FIG. 2a. Good guess (A) versus exact steady state solution (-). 
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FIG. 2b. Bad guess (e) versus exact steady state solution (-). 
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FIG. 3a. Steady state difference solution (x) with j,,, = 18 versus exact solution (-). 

b 

0 8- 

0.0), 

0 2 4 6 8 10 

X 

FIG. 3b. Steady state difference solution (x) with j,,, = 34 versus exact solution (-). 
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FIG. 4 (continued) 

We next examine convergence behavior for the various methods. We plot 
maximum residual (value obtained by substituting the current difference solution into 
the steady-state difference equations) versus either iterations or computer time. 
Computer time will be based on units where one unit is the time necessary for one 
step of the Brailovskaya method (see Table I). We note that in implementing FIST, 
EST, and AUI, the inversion of matrix A was actually obtained using a banded 
solver rather than a block tridiagonal solver. This was done because the block 
tridiagonal decomposition could become ill conditioned at large values of CFL. 

We first look at runs made with FIST, EST, and AU1 at various values of CFL 
(Figs. 4a-c). In all cases, the bad guess was used and j,,, = 34. As usually assumed, 
each method converges in fewer iterations as the CFL factor becomes larger. (It is 

TABLE I 

Method 
Max CFL 
good guess 

Max CFL 
bad guess 

Time units 
per iteration 

Brailovskaya 1 1 I 
EST 9 6 3.4 
AU1 10 10 3.5 
FIST lOI 175 4.8 
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interesting to note that starting with the good guess, it is possible to find CFL values 
for which EST and AU1 oscillate between two states instead of converging.) When 
compared with respect to computer time at fixed CFL = 3 and 6 (Figs. 5a and b), we 
see that there is very little difference between EST and AUI, and that the extra work 
per iteration needed in FIST does not pay off in faster convergence. When compared 
at their maximum allowable CFL values (Fig. 5c), however, the FIST method is 
clearly superior. 

5. CONCLUDING REMARKS 

As demonstrated by the numerical results, for one-dimensional problems the FIST 
approach produces significant increases in computational efficiency when compared 
with purely explicit methods and with implicit methods using explicit shock tracking. 
In some sense, this comparison is unfair since for very large time steps FIST 
approaches Newton’s method for solving the difference analog of the steady state 
equations, and thus exhibits quadratic convergence behavior. In fact, the FIST 
approach combines the advantages in computational efficiency of Newton’s method 
with the robustness of time asymptotic methods. 

The implications of the present study for multidimensional problems are difficult to 
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assess. This is especially true if operator splitting or factorization is used. It is not 
clear how the various methods will compare with respect to computer time needed 
per iteration, or how large the maximum allowable CFL values will be. Two 
competing factors affect the computational time per iteration. Assuming a single 
shock, the fully coupled implicit shock treatment will occur in only one of the direc- 
tional sweeps. The number of variables needed to specify the shock geometry and 
movement will increase, however. The maximum allowable CFL values for each 
method are problem dependent and will certainly be limited by splitting error. Since 
FIST will no longer reduce to Newton’s method in this framework, the suitability of 
the various methods depends on the relation between the CFL restriction due to 
splitting and the CFL restriction due to explicit shock treatment. It is impossible to 
discern a priori which method will be best. 

In closing we note that a split version of FIST is being developed for the super- 
sonic blunt body problem. The results of this work will appear in a forthcoming 
paper. 

APPENDIX A: CHARACTERISTIC ANALYSIS OF THE BOUNDARIES 

The background on characteristic theory and characteristic compatibility 
conditions may be found in [lo]. For their application to the treatment of boundaries 
in fluid dynamics, see [ 1 I]. We give here only an outline of the general approach and 
apply it to system (3). 

Since system (3) is hyperbolic, it is equivalent to three characteristic compatibility 
conditions. These conditions take the form of ordinary differential equations which 
hold along characteristic curves in (r, <) space. At a boundary of the computational 
domain, certain of these curves are “admissible” since they reach the boundary from 
inside the computational domain (when moving along them in the direction of 
increasing r). The compatibility conditions associated with these admissible charac- 
teristics may be applied as computational boundary conditions. Other characteristic 
curves are “inadmissible” since they reach the boundary from outside the domain. 
The compatibility conditions corresponding to these curves must be replaced by 
specified boundary values. 

Specifically, (3) is equivalent to the quasilinear system. 

(Al) 

where B = &Z + &.[aF/H], and [89+/a%] is the Jacobian matrix of Y with respect 
to Z!. The characteristic matrix associated with (Al) is 
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where A 0 = & + A, c,, A, = A, &, and a is the speed of sound. A characteristic curve 
@(r, t) = const satisfies the characteristic condition 

det C = (~((3~ - a*A:) = 0, (A3) 

where u = A, + u/1,, ,I, = @,, and i, = @,. The slopes of the characteristic curves 
SFO, SF+ associated with the three distinct characteristic conditions o0 = 0, o + = *aA, 
are given, respectively, by 

644) 

where q = r, + u&. The V0 curve is a particle path and the G?* curves represent Mach 
(or sound) waves.. Corresponding to the three characteristic conditions are three 
independent left null vectors (defined by 1 . C = 0) given by 

FIG. Al. Characteristic slopes at c = 0 for supersonic inflow. 
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The three characteristic compatibility conditions holding along the characteristic 
curves are obtained by left multiplying (Al) by I, and I, in the form 

I. Z,(U) = 0 or l.Yyzzl)=O. (‘46) 

Inflow and Outflow Boundaries 

At the inflow boundary r = 0, we assume the flow to be supersonic (U > a). Since 
$ = 0 and C& > 0 at l= 0, it follows from (A4) that the characteristic slopes are as 
depicted in Fig. A 1. Hence, none of the characteristics are admissible and accor- 
dingly all the flow variables must be specified at < = 0. 

At the outflow boundary < = K, we assume subsonic flow (0 < u < a). In this case, 
the characteristic slopes are depicted in Fig. A2. Hence, at <= K, the compatibility 
conditions associated with the admissible characteristics q0 and g.. should be 
satisfied and one flow variable must be specified. Although several possibilities exist, 
we specify the density pe at outflow. This leads to (5a) for the first component of U 
on r = K. The derivative of (5a) with respect to r and compatibility conditions (A6) 
for %$ and GY- give the following system on r = K: 

FIG. A2. Characteristic slopes at (= K for subsonic outflow. 
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where 

1 0 0 ‘1 0 0 
T, = fU2 - (a’/(y - 1)) 1 Ti=T,- 0 0 0 

((a/(7 - 1)) - Mu u-(& 1)) -1 1 I=K’ i i 0 0 0, 

The above can be solved for (aU,/&),=, and (aU,/&)S,K. The result is given in 

(5b). 

Shock Wave Boundaries 

The shock wave l= 1 is an internal computational boundary. We first analyze 
each side separately and then combine the results appropriately. We assume that the 
flow crosses the shock from left (L) to right (R) which implies that the left side of 
< = 1 is the low pressure side. In addition we have that w, = U, - s, > aL and 
0 < wR = uR -s, < uR (see, e.g., [ 121). S ince on both sides of r = 1, & = -&.s, and 
i;‘, > 0, it follows from (A4) that the characteristic slopes on each side of { = 1 are as 
depicted in Fig. A3. 

For the left side of < = 1, all the compatibility conditions should be satisfied, cf., 
Fig. A3a. This is equivalent to satisfying the full system (3) on the left side of < = 1 
(with the c-derivatives interpreted using quantities only to the left side of < = 1). 

For the right side of { = 1, only the compatibility condition corresponding to ‘;k; 
should be satisfied; cf., Fig. A3b. The form of this compatibility condition used in 
this study is obtained from the second expression in (A6). Noting that (&,/A ,)R I + = 
-1, . B and that (&/A,), = -(<&(~a -a,), we obtain 

(A7) 

7 

4=1 t 

FIG. A3a. Characteristic slopes on the left (low pressure) side of r= I. 
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b 

FIG. A3b. Characteristic slopes on the right (high pressure) side of r = 1. 

Here I, is evaluated at the right side of the shock. The left side of (A7) can be 
written in terms of Q = (p, u,p)’ as 

1, . W/a7>, = 1, . lW~Ql,‘G’Q,/W = (l/b - l>>[(iP/ar) - up@/az)J,, 

(A81 

where [LW/C~Q] is the Jacobian matrix of ZY with respect to Q which, for a perfect 
gas, can be obtained by direct calculation. In (A8), the derivatives of pR and U, can 
be eliminated using the Rankine-Hugoniot relations, (Bl) of Appendix B, differen- 
tiated with respect to 7. The result is 

(Y - 1) 1, - W/37), = -co@sJ37) + b,@P#7> + b,@@7) + b,(au,/a7), 

(A91 

where 

co = [@R -PLY(%t - %)l[(Y - 1) WR(WL - %) - UR(b + a,)], 

b, = MWL - J4/(53 - %>I + 1, 

b, = [l/(wR - wkG~R -4%. - (WL - &J(Y - 1) WLWR + %(WL - %)I 15 
b3=co-uRpR. 
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An expression for the r derivatives of pL, u,, and pL required in (A9) can be obtained 
from the differential equations on the left side of 6 = 1 in the form 

3QL aFP -' -=- - az [ II aQ L I! . L 
(AlO) 

Combining A7-A10 gives, after some manipulation, the final result 

where 

aI = WC~)(Y - WJR( wR -aR)[fui + @R/b- 2))uR9 -"R - @R/b- l)), ll, 

a,=(r”)L 

CO 

b,(+(y- l)wd+~(v(~-- l)u,)+b,, 

(Y- 1) (w,b, +:)I7 

(x3= (~/co)[~PR~R--L(~~L~, + ~Lbz)l. 

APPENDIXB: RANKINE-HUGONIOT SHOCK RELATIONS 

We give here the jump conditions across the shock in terms of the U variables and 
s, s,. For a perfect gas, we have (cf. [ 121) 

QR+) = (;!$$S;;~) -f(QL,S,), (Bl) 

where 

M2 = @L - %Y PLIOPL) and /3=2(M2- l)/[(y+ 1)M2]. 

Since on the left side (subscript L) of the shock r, = l/s, 
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On the right side (subscript R) of the shock & = (K - I)/(x,,~ -s) which implies 

(x max - s)A(s) 
PR 

u, = 
K-l PRUR 

i 
= h(QR, s). 033) 

P,l(Y - 1) + PI&/2 

We therefore have 

APPENDIXC: INVERSION ALGORITHM FOR EQ. (13) 

Here we give a 2 X 2 block matrix inversion algorithm for the system, 

A B Lll C II 

where D is very small (in the present context 2 X 2) and A admits a convenient L-U 
factorization (in this case A is block tridiagonal). 

Following [9] observe that 

and 

Ay t Bz =f, (Cl) 

Cy+Dz=f,. ((3) 

Then from (C I), 

y=A-‘fj - (A-‘B)z. (C3) 

Substitution of (C3) into (C2) yields 

C(A-If,) - C(A-‘B)z + Dz =f2 

or 

z = (D - CA-‘B)-‘(f2 - CA-If,). (C4) 
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Substitution of (C4) into (C3) yields 

y = A-If, - A-‘B(D - CA-lB)pl(fz - CA-!f,). cc51 

Note that in the evaluation of (C4) and (C5), A-If, and A-‘B are obtained 
simultaneously; indeed, the evaluation of A-IS, is a standard inversion technique and 
the computation of A-‘B requires only one extra backsolve for each column of B. 
Theoretical work estimates indicate that (for the case when D is 2 x 2) the evaluation 
of A-‘B increases the work by only 60% over that required for A-If,. By design, 
D - CA-‘B is a small matrix and thus easily inverted. 

APPENDIX D: THE BRAILOVSKAYA SCHEME 

The Brailovskaya scheme [ 131 (also known as the Matsuno scheme) for the system 
U, + F, + H = 0 is given by the following explicit predictor-corrector sequence: 

(predictor) Uj* = Ui” - Az[(F;+, -F;-,)/PAO+H,“l, 

(corrector) Uj”“=Uy-At[(Fj*,,-F,*_,)/(2At)+Hjr], 

where Fj*, H,? are evaluated at t”+’ using UT. For the differential equations (5b) and 
(7), the above scheme is used with appropriate one-sided r differences. The formal 
truncation error of this scheme is O(At, At2) and a sufficient stability (von Neumann) 
condition is CFL < 1 (cf. Section 4). 
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